Bayesian and L1 Approaches for Sparse Unsupervised Learning
نویسندگان
چکیده
The use of L1 regularisation for sparse learning has generated immense research interest, with many successful applications in diverse areas such as signal acquisition, image coding, genomics and collaborative filtering. While existing work highlights the many advantages of L1 methods, in this paper we find that L1 regularisation often dramatically under-performs in terms of predictive performance when compared to other methods for inferring sparsity. We focus on unsupervised latent variable models, and develop L1 minimising factor models, Bayesian variants of “L1”, and Bayesian models with a stronger L0-like sparsity induced through spike-and-slab distributions. These spikeand-slab Bayesian factor models encourage sparsity while accounting for uncertainty in a principled manner, and avoid unnecessary shrinkage of non-zero values. We demonstrate on a number of data sets that in practice spike-and-slab Bayesian methods outperform L1 minimisation, even on a computational budget. We thus highlight the need to re-assess the wide use of L1 methods in sparsity-reliant applications, particularly when we care about generalising to previously unseen data, and provide an alternative that, over many varying conditions, provides improved generalisation performance. Appearing in Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright 2012 by the author(s)/owner(s).
منابع مشابه
Evaluating Bayesian and L1 Approaches for Sparse Unsupervised Learning
The use of L1 regularisation for sparse learning has generated immense research interest, with many successful applications in diverse areas such as signal acquisition, image coding, genomics and collaborative filtering. While existing work highlights the many advantages of L1 methods, in this paper we find that L1 regularisation often dramatically under-performs in terms of predictive performa...
متن کاملBayesian Learning of Non-compositional Phrases with Synchronous Parsing
We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...
متن کاملBayesian Learning of Non-Compositional Phrases with Synchronous Parsing
We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...
متن کاملA Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge
Scripts representing common sense knowledge about stereotyped sequences of events have been shown to be a valuable resource for NLP applications. We present a hierarchical Bayesian model for unsupervised learning of script knowledge from crowdsourced descriptions of human activities. Events and constraints on event ordering are induced jointly in one unified framework. We use a statistical mode...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012